Multiple Metal–Carbon Bonds. 9.¹ Preparation and Characterization of Several Alkylidene Complexes, $M(\eta^5-C_5H_5)_2(alkylidene)X (M = Ta \text{ or } Nb)$, and the X-Ray Structure of $Ta(\eta^5-C_5H_5)_2(CHC_6H_5)(CH_2C_6H_5)$. An Investigation of Alkylidene Ligand Rotation

Richard R. Schrock, *^{2a,c} Louis W. Messerle,^{2b,c} Clayton D. Wood,^{2c} and Lloyd J. Guggenberger*^{2d}

Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Contribution No. 2546 from the Central Research and Development Department, E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898. Received November 4, 1977

Abstract: The reaction of $Ta(CH_2Ph)_3Cl_2$ or $M(CH_2CMe_3)_2Cl_3$ with TlC_5H_5 gives $TaCp_2(CHPh)(CH_2Ph)$ or $MCp_2(CHCMe_3)Cl$ (M = Nb or Ta), respectively. Cl in $TaCp_2(CHCMe_3)Cl$ can be replaced by $CHPh_2$ or PMe_3 (to give a cationic complex); $TaCp_2(CHSiMe_3)(CH_3)$ is prepared by deprotonating $[TaCp_2(CH_2SiMe_3)(CH_3)]^+Br^-$. All $TaCp_2(CHR)(X)$ complexes are pseudotetrahedral molecules in which the ==CHR ligand is oriented approximately perpendicular to the C(alkylidene)-Ta-X plane according to ${}^{13}C$ and ${}^{1}H$ NMR studies. The ==CHR ligand in all neutral complexes rotates about the C(alkylidene)-Ta bond axis into the C-Ta-X plane with a ΔG_{rot}^+ inversely proportional to the size of R. An x-ray structure of $TaCp_2(CHPh)(CH_2Ph)$ shows that the benzylidene ligand (Ta==C 2.07 Å) is in fact not strictly perpendicular to the C(alkylidene)-Ta-X plane in the ground state but is already tipped 5.7° to the inside because of unfavorable steric interaction in what is a rather crowded molecule. These structural results are compared with others.

Introduction

An attempt to make a crowded Nb(V) or Ta(V) alkyl complex often yields an alkylidene complex instead, formally the product of abstraction of one alkyl's α -hydrogen atom by another's α -carbon atom. So far the most stable complexes which have been isolated have two η^5 -cyclopentadienyl rings bound to the metal; this class includes the only known methylene complex, TaCp₂(CH₂)(CH₃).³ The methylene ligand in TaCp₂(CH₂)(CH₃) does not rotate on the ¹H NMR time scale. Other alkylidene ligands in analogous complexes, however, do. This paper will explore this phenomenon via ¹H NMR and x-ray diffraction studies. Complete preparative details and properties of the MCp₂(alkylidene)(X) complexes and a cationic relative, [TaCp₂(CHCMe₃)(PMe₃)]⁺Cl⁻, are also disclosed.

Results

Preparation of Alkylidene Complexes. The reaction between $TaMe_3Cl_2$ and TlC_5H_5 in toluene is known to yield first $TaCpMe_3Cl$ and then $TaCp_2Me_3$, each in high yield, after addition of 1 or 2 mol of TlC_5H_5 , respectively, per $Ta.^3$ In contrast, the corresponding reaction between $Ta(CH_2Ph)_3Cl_2$ and 2 mol of TlC_5H_5 is considerably slower and $TaCp(CH_2Ph)_3Cl$ has not yet been isolated from these reaction mixtures. The only isolated product is $TaCp_2(CHPh)$ -(CH₂Ph). If the reaction is done in benzene, 94% of the theoretical amount of toluene is found in the volatiles. Therefore, the overall stoichiometry is that shown in the equation

$$Ta(CH_2Ph)_3Cl_2 + 2TlC_5H_5$$

$$\xrightarrow{-2TlCl} PhCH_3 + TaCp_2(CHPh)(CH_2Ph) \quad (1)$$

 $Ta(CH_2CMe_3)_3Cl_2$ does not react with TlC_5H_5 in toluene in 3 days. $Ta(CH_2CMe_3)_2Cl_3$, however, does. $(Ta(CH_2CMe_3)_3Cl_2$ is probably too crowded.) Using 1 mol of TlC_5H_5 , $TaCp(CHCMe_3)Cl_2$ can be isolated in high yield.⁴ $TaCp(CHCMe_3)Cl_2$ reacts more slowly with a second mole of TlC_5H_5 to give $TaCp_2(CHCMe_3)Cl$. A similar reaction between Nb(CH₂CMe₃)₂Cl₃ and 2 mol of TlC₅H₅ gives NbCp₂(CHCMe₃)Cl, possibly via NbCp(CHCMe₃)Cl₂.^{4.5} Neopentane has been identified in each case by GLC, though it has not been measured quantitatively; presumably 1 mol is formed. The reaction therefore proceeds as shown in the equations

$$M(CH_{2}CMe_{3})_{2}Cl_{3} + TlCp$$

$$\xrightarrow{-TlCl} "MCp(CH_{2}CMe_{3})_{2}Cl_{2}" \xrightarrow{-CMe_{4}} MCp(CHCMe_{3})Cl_{2}$$
(2)

$$MCp(CHCMe_3)Cl_2 + TlCp \xrightarrow{-TlC_1} MCp_2(CHCMe_3)Cl \quad (3)$$

(M = Nb or Ta). $Ta(\eta^5 \cdot C_5 H_4 Me)_2(CHCMe_3)Cl$ can be prepared analogously employing 2 mol of $TlC_5 H_4 Me$ in toluene or $LiC_5 H_4 Me$ in THF.

TaCp₂(CHPh)(CH₂Ph), Ta(η^5 -C₅H₄R)₂(CHCMe₃)Cl (R = H or Me), and NbCp₂(CHCMe₃)Cl crystallize as brownish-yellow to bronze-colored needles. All are soluble in toluene, acetonitrile, and dichloromethane but only sparingly soluble in saturated hydrocarbons or diethyl ether. TaCp₂(CHC-Me₃)Cl does not conduct in acetonitrile. In contrast to TaCp₂(CH₂)(CH₃)³ these complexes are thermally stable. For example, both TaCp₂(CHPh)(CH₂Ph) and TaCp₂(CHC-Me₃)Cl can be heated in refluxing toluene for several hours and recovered quantitatively unchanged (by ¹H NMR) except for some discoloration. Presumably bimolecular decomposition, the demonstrated mode of decomposition for TaCp₂(CH₂)(CH₃),^{3a} is sterically blocked when the methylene is substituted with Ph or CMe₃. They also are not especially air sensitive in the solid state and can be handled briefly in air.

Another member of this class of complexes can be prepared by deprotonating $[TaCp_2(CH_2SiMe_3)(CH_3)]^+Br^-$ with $Me_3P=CH_2$ in THF.³ The protons on the carbon between Ta and Si must be considerably more acidic than the methyl protons. The product, $TaCp_2(CHSiMe_3)(CH_3)$, forms ivory plates which are moderately soluble in pentane.

Figure 1. The 22.63-MHz $^{13}C\{^1H\}$ NMR spectrum of $TaCp_2(CHPh)-(CH_2Ph)$ in C_6D_6 at 30 °C.

Two other examples can be prepared by replacing Cl in $TaCp_2(CHCMe_3)Cl$. Although $TaCp_2(CHCMe_3)Cl$ does not react with LiMe in ether at 25 °C in 24 h, it does react readily with LiCHPh₂·TMEDA in toluene to give pentane-soluble $TaCp_2(CHCMe_3)(CHPh_2)$. ¹³C NMR evidence (vide infra) suggests that the diphenylmethyl proton has not transferred to the neopentylidene ligand. The final example is formed simply by mixing $TaCp_2(CHCMe_3)Cl$ with PMe₃ in toluene:

$$TaCp_{2}(CHCMe_{3})Cl + PMe_{3} \rightarrow [TaCp_{2}(CHCMe_{3})(PMe_{3})]^{+}Cl^{-}$$
(4)

 $[TaCp_2(CHCMe_3)(PMe_3)]^+Cl^-$ separates as a white powder which can be recrystallized from acetonitrile (with ether) as silvery-white platelets. Its equivalent conductance in acetonitrile is in the range expected for a monocationic complex.

TaCp₂(CHCMe₃)Cl also reacts with carbon monoxide to produce a white, crystalline product which is still being characterized. [TaCp₂(CHCMe₃)(CO)]⁺Cl⁻ is ruled out since we find no neopentylidene-like C_{α} or H_{α} by ¹³C or ¹H NMR, respectively.

NMR Studies. The ¹³C spectra of the neutral alkylidene complexes all show a characteristic resonance at low field due to the alkylidene α -carbon atom (Table I). In the gated decoupled spectra these peaks are doublets with ¹J_{CH} in the range 105-130 Hz. In the case of NbCp₂(CHCMe₃)Cl the doublet is broadened by coupling to ⁹³Nb ($I = \frac{9}{2}$, 100%). The cyclopentadienyl ligands are *nonequivalent* in each case. Therefore, in the ground state the alkylidene ligand plane must be perpendicular to the C-Ta-X plane (X = C in an alkyl ligand, Cl, etc; cf. TaCp₂(CH₂)(CH₃)⁷); the molecules have no symmetry. The remaining spectral features are straightforward. An example, the ¹³C NMR spectrum of TaCp₂(CHPh)(CH₂Ph), is shown in Figure 1.

The ¹H NMR spectra show the resonance for the alkylidene α proton near τ 0.0 (cf. τ -0.11 in TaCp₂(CH₂)(CH₃)). The factors which influence the ¹H NMR chemical shift of an alkylidene α proton are at present not well known. In MCp(CHCMe₃)Cl₂⁴ they are found at ca. τ 3 and in M(CH₂CMe₃)₃(CHCMe₃)⁹ at ca. τ 8 (M = Nb or Ta). Chemical shifts for α protons in three other carbene-type complexes are as large as or larger than those found here.⁸ At 0 °C the nonequivalent cyclopentadienyl ligands usually can be resolved at 100 MHz. In TaCp₂(CHPh)(CH₂Ph) the molecular asymmetry is manifest in another way; the benzyl α protons are diastereotopic and give rise to an AB quartet with $J_{\rm H_AHB} = 10.7$ Hz (see Figure 2).

There is no reason to suspect that the cationic complex, $[TaCp_2(CHCMe_3)(PMe_3)]^+Cl^-$, is anything other than what it appears to be since all the features noted for the neutral molecules can also be found in its ¹H and ¹³C NMR spectrum. One might expect some rather different values for (e.g.) τH_{α} , ¹³C_{\alpha}, or ¹J_{CH} if the phosphine were interacting significantly with the neopentylidene α -carbon atom. We should note that

Figure 2. The η^5 -C₅H₅ (τ 5.05) and benzyl α -proton signals in the 100-MHz ¹H NMR spectrum of TaCp₂(CHPh)(CH₂Ph) in toluene-d₈ (* = toluene-d₇ and traces of toluene-d₀).

a formal positive charge does not increase $\delta^{13}C_{\alpha}$ significantly (cf. NbCp₂(CHCMe₃)Cl). Therefore, the positive charge may be localized primarily on the more electropositive Ta⁵⁺ (in 1) or P⁵⁺ (in 2), rather than on C_{α} of the neopentylidene ligand.

As the temperature of a ¹H NMR sample of $TaCp_2(CHPh)(CH_2Ph)$ in toluene- d_8 is raised, the two cyclopentadienyl proton resonances and the two methylene proton resonances each coalesce to a singlet as shown in Figure 2. During this process the benzylidene α -proton resonance remains sharp. Therefore dynamic processes involving proton transfer to or from the benzylidene ligand must be slow on the

Table I. Some ¹³ C and	¹ H NMR	Data for	Alkylidene	Complexes ^a
-----------------------------------	--------------------	----------	------------	------------------------

Compd	$^{1}H_{\alpha}, \tau$	$\delta^{13}C_{\alpha}$, ppm	¹ J _{CH} , Hz	$\Delta G_{\rm rot}^{\pm} (\pm 0.2),$ kcal mol ⁻¹	<i>T</i> _c , K	δν _∞ , Hz
$TaCp_2(CHPh)(CH_2Ph)$	-0.86 ^b	246 ^c	127 ^c	19.2 ^d	391	68 <i>d</i>
TaCp ₂ (CHCMe ₃)Cl	-0.10	274 ^c	121 °	16.8 ^{b.e}	323	13.0
NbCp ₂ (CHCMe ₃)Cl	-2.12	299 ^{<i>f</i>}	131	15.6 ^b	294	7.2
$Ta(\eta^5 \cdot C_5H_4Me)_2(CHCMe_3)$ -	0.19	269	119	15.9 <i>8</i>	315	27 <i>8</i>
$TaCp_2(CHCMe_3)(CHPh_2)$	0.15	267	113	16.7	309	5.0
$TaCp_2(CHSiMe_3)(CH_3)$	-0.14	236	107	17.1	331	15.5
$[TaCp_2(CHCMe_3)(PMe_3)]^+ - Cl^{-h}$	-1.45 ^{<i>i</i>}	294 ^j	110	≥23	≥400	28

^{*a*} Solvent C₆D₆ and $\delta \nu_{\infty}$ = the chemical shift difference between Cp and Cp' unless otherwise noted. ^{*b*} Solvent CD₃C₆D₅. ^{*c*} Solvent CD₂Cl₂. ^{*d*} Calculated from collapsing benzyl AB quartet; see Experimental Section. ^{*e*} $\Delta G^{\pm} = 16.8$ kcal mol⁻¹ by complete line shape analysis courtesy of P. Meakin. ^{*f*} A broadened doublet [coupling to ⁹³Nb ($I = \frac{9}{2}$, 100%)]. ^{*g*} Calculated from coalescing methyl groups on η^5 -C₅H₄Me ligands. ^{*h*} Solvent CD₃CN. ^{*i*-3}J_{HP} = 4 Hz. ^{*j*-2}J_{CP} = 13.8 Hz.

Figure 3. The high- and low-temperature limiting spectra in the cyclopentadienyl region for $Ta(\eta^5-C_5H_4Me)_2(CHCMe_3)Cl$ in toluene- d_8 at 220 MHz (* = an unknown impurity).

¹H NMR time scale (cf. TaCp₂(CD₂)(CH₃)³). A value for ΔG^{\pm} can be obtained from either the cyclopentadienyl or benzyl methylene proton patterns using the Eyring equation and T_c and k_c calculated from the equation¹⁰ $k_c = \pi (\delta \nu_{\infty}^2 + 6J^2)^{1/2}(2)^{-1/2}$ (see Experimental Section). The two ΔG^{\pm} values so obtained agree within the expected experimental error. Therefore, each spectral change is most likely the result of the same temperature-dependent process in which $\Delta G^{\pm} = 19.2 \pm 0.2$ kcal mol⁻¹.

Similar temperature-dependent spectra are observed for the other neutral complexes listed in Table I and ΔG^{\ddagger} values calculated by similar methods. The cyclopentadienyl groups in $[TaCp_2(CHCMe_3)(PMe_3)]^+Cl^-$, on the other hand, remain nonequivalent up to 90 °C at 90 MHz in CD₃CN ($\Delta G^{\ddagger} \ge 23$ kcal mol⁻¹, ref 11).

 $Ta(\eta^5-C_5H_4Me)_2(CHCMe_3)Cl$ is the most interesting complex to study in detail. The high- and low-temperature limiting spectra in the cyclopentadienyl region at 220 MHz are shown in Figure 3. Since the molecule is asymmetric, the eight cyclopentadienyl protons are nonequivalent, and the cyclopentadienyl methyl groups (not shown in Figure 3) are nonequivalent, at the lower limit. As the temperature is raised the eight protons become four and the two methyl groups (not shown) equilibrate. ΔG^{\ddagger} , calculated by observing the coalescing methyl groups, is slightly smaller than that found for TaCp₂(CHCMe₃)Cl (Table I). The important point is that one and only one plane of symmetry is created as a result of the averaging process. The validity of this conclusion was checked by analyzing the spectra of $Ta(\eta^5-C_5H_4Me)_2Me_3$ and $[Ta(\eta^5-C_5H_4Me)_2Me_2]^+BF_4^-$ (each has two symmetry planes and therefore two cyclopentadienyl proton multiplet resonances) and $Ta(\eta^5-C_5H_4Me)_2(CH_2)(CH_3)$ (it has one symmetry plane, and therefore four cyclopentadienyl proton resonances).3

Figure 4. The molecular structure of $Ta(\eta^5-C_5H_5)_2(CHC_6H_5)-(CH_2C_6H_5)$.

One of the most intriguing possible explanations of the observed temperature-dependent process is that the alkylidene ligand rotates into the C(alkylidene)-Ta-X plane while the tetrahedral molecular geometry does not change. The most acceptable "proof" that this is the case would be to discover that substituted alkylidene ligands turn away from the most favored orientation (perpendicular to the C(alkylidene)-Ta-X plane) to an extent Φ which varies inversely with the magnitude of ΔG^{\ddagger} . The molecular structure of TaCp₂(CHPh)(CH₂Ph) was therefore determined by x-ray diffraction and compared (see Discussion) with the structures of TaCp₂(CH₂)(CH₃)⁷ and TaCp₂(CHCMe₃)Cl.¹²

Molecular Structure of $Ta(\eta^5-C_5H_5)_2(CHC_6H_5)(CH_2C_6H_5)$. The unit cell consists of discrete molecules with the structure shown in Figure 4. Details concerning the structural analysis can be found in the Experimental Section. The final positional and thermal parameters are given in Table II. Pertinent interatomic distances and angles are listed in Table III and some of the least-squares planes and dihedral angles in Table IV. All intermolecular distances are larger than 2.50 Å except H(3)- - H(7'), which is 2.35 Å.

The structural features are typical of $bis(\eta^5$ -cyclopentadienyl) transition metal complexes. The planar η^5 -C₅H₅ groups bend back away from the remaining two ligands creating a

Table II. Final Positional and Thermal Parameters (×10⁴) for $Ta(\eta^5-C_5H_5)_2(CHC_6H_5)(CH_2C_6H_5)^a$

Atom	<i>x</i>	<u>y</u>	Z	β_{11}	β ₂₂	β33	β ₁₂	β_{13}	β ₂₃
Та	1144.3 (6)	-0.3(4)	8031.8 (3)	134.8 (10)	31.5 (3)	46.6 (4)	-8.3(5)	16.4 (4)	-0.1(3)
C(1)	3808 (16)	-114(10)	7880 (11)	120 (19)	64 (10)	64 (10)	49 (12)	18 (11)	-8(8)
C(2)	3541 (17)	-763 (11)	8456 (16)	80 (24)	65 (11)	157 (18)	20 (13)	46 (17)	22 (12)
C(3)	3175 (19)	-444 (11)	9350 (10)	264 (36)	59 (9)	27 (10)	11 (14)	14 (15)	4 (7)
C(4)	3253 (14)	426 (9)	9308 (12)	61 (19)	33 (7)	115 (14)	4 (9)	16 (13)	4 (8)
C(5)	3675 (17)	660 (8)	8372 (11)	208 (28)	39 (6)	58 (10)	-34 (10)	25 (14)	5 (6)
C(6)	-295 (17)	-853 (8)	9003 (9)	217 (26)	36 (6)	45 (9)	-52 (10)	-9(13)	-1(6)
C(7)	-1354 (17)	-301 (8)	8444 (11)	194 (25)	28 (6)	64 (11)	-27 (9)	46 (14)	-2 (6)
C(8)	-1452 (16)	-471 (9)	7422 (11)	144 (23)	34 (7)	72 (11)	-10(11)	21 (13)	3 (7)
C(9)	-523 (20)	-1128 (10)	7287 (13)	239 (33)	57 (9)	89 (15)	-47 (14)	44 (18)	-26 (9)
C(10)	104 (17)	-1395 (9)	8212 (14)	145 (24)	43 (8)	139 (17)	-45 (11)	-9(17)	14 (10)
C(11)	471 (13)	1208 (7)	8309 (9)	58 (17)	35 (6)	57 (9)	7 (8)	17 (10)	16 (6)
C(12)	-996 (15)	1641 (7)	8236 (9)	161 (23)	21 (5)	40 (8)	-8 (9)	4 (11)	12 (5)
C(13)	-2270 (16)	1567 (9)	7428 (11)	145 (25)	48 (8)	74 (12)	15 (11)	7 (14)	2(7)
C(14)	-3613 (18)	1956 (11)	7454 (12)	140 (27)	78 (11)	67 (12)	-7(14)	-7(15)	31 (9)
C(15)	-3803 (20)	2504 (10)	8208 (15)	202 (34)	45 (8)	107 (17)	19(13)	47 (21)	33 (10)
C(16)	-2621 (22)	2616 (9)	8945 (12)	260 (37)	39 (8)	56 (12)	19 (14)	44 (17)	9(7)
C(17)	-1218 (18)	2209 (8)	8972 (11)	204 (30)	35 (6)	58 (10)	6(11)	15(14)	7(7)
C(21)	1063 (18)	204 (9)	6348 (10)	193 (27)	53 (10)	38 (8)	-24 (11)	15(12)	3 (6)
C(22)	1976 (17)	846 (11)	5948 (11)	136 (25)	81 (11)	55 (10)	-5(13)	26 (13)	29 (9)
C(23)	1788 (17)	1690 (10)	6150 (11)	155 (26)	66 (9)	69 (12)	53 (13)	59 (14)	33 (8)
C(24)	2582 (17)	2302 (11)	5699 (13)	132 (26)	83 (11)	95 (14)	65 (14)	51 (17)	46 (10)
C(25)	3628 (18)	2073 (11)	5143 (11)	158 (28)	66 (9)	59 (11)	-8(13)	-2(14)	34 (8)
C(26)	3885 (23)	1247 (13)	4955 (13)	230 (38)	87 (12)	91 (15)	-13 (18)	50 (18)	1(11)
<u>C(27)</u>	3014 (20)	642 (10)	5332 (10)	282 (36)	54 (8)	31 (9)	-13 (14)	8 (15)	-8 (7)
Atom	1J	x	<u>y</u>	Ζ	Atom	<i>x</i>		у	Z
H(1)	4	074	-180	7196	H(14)	-45	33	1829	6908
H(2)	3	644	-1397	8307	H(15)	-48	18	2803	8178
H(3)	2	821	-781	9910	H(16)	-27	79	3043	9483
H(4)	31	097	827	9856	H(17)	-3	29	2327	9557
H(5)	3	791	1244	8103	H(21A)	-	47	302	6058
H(6)		91	-875	9746	H(21B)	13	78	-355	6088
H(7)	-1	927	152	8739	H(23)	10	86	1864	6637
H(8)	-2	128	-154	6862	H(24)	23	67	2937	5785
H(9)	-:	298	-1377	6624	H(25)	43	00	2522	4876
HÌIÓ)	745	-1929	8358	H(26)	46	40	1053	4482
H(11) 1.	370	1590	8556	H(27)	31	59	21	5177
H(13) -2	158	1202	6820					

^a The estimated standard deviations here and in other tables are given in parentheses. The anisotropic temperature factor is of the form $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$.

pseudotetrahedral molecule with an angle between the two Cp centroids (CNT1-Ta-CNT2, Table III) equal to 132.6 (6)° (132.2° by dihedral angles; Table IV) and a C(11)-Ta-C(21) angle equal to 95.2 (5)°. Both are in the range frequently observed for bis(η^5 -cyclopentadienyl) transition metal complexes.^{13,14} The cyclopentadienyl rings are not quite eclipsed; possible factors are the short H(3)- - -H(7') intermolecular distance and the many short intramolecular interatomic H- - H interactions (vide infra).

The most significant Ta-carbon distances are Ta-C(11) and Ta-C(21). The Ta-C(21) bond length of 2.30 (1) Å is characteristic of a single bond (cf., for example, 2.26 (2) Å in Ta(CH₂CMe₃)₃(CCMe₃)·Li(dimethylpiperazine)¹⁵ and 2.246 (12) Å in TaCp₂(CH₂)(CH₃)⁷). The Ta-C(11) bond length of 2.07 (1) Å is believed to be characteristic of a bond order significantly greater than one (cf. 2.026 (10) Å for Ta=CH₂). The difference between Ta-C(21) and Ta-C(11) is 0.23 Å, virtually identical with the difference (0.22 Å) between Ta=CH₂ and Ta-CH₃. These shorter bonds are essentially double bonds if 1.76 Å is believed to be close to a Ta-carbon triple bond length.¹⁵

One prominent structural feature of this molecule is the crowded coordination sphere. Many nonbonding H- - -H contacts lie in the 2.25–2.60 Å range (Table III). Most of these are between α protons, C(21A), C(21B), or C(11), and phenyl or cyclopentadienyl protons. This is quite likely the reason why

the nonhydrogen atoms on the benzyl and benzylidene ligands (and the cyclopentadienyl ligands) roughly conform to $C_2(2)$ symmetry (although the molecule has no true chemical or crystallographic point symmetry). Short H- - -H contacts could also explain (1) why the phenyl rings are twisted with respect to the Ta- C_{α} - C_{β} planes (the Ta, C(11), C(12), C_6H_5 and Ta, C(21), C(22), C_6H_5 torsion angles are 41.3 and 60.8°, respectively; Table IV), and (2) why the benzyl's phenyl ring is *not* turned to the "outside", i.e., between the two cyclopentadienyl ligands (a model shows this is clearly less favorable no matter how the ring is oriented) but to the "inside" toward the benzylidene ligand. The dihedral angle between the Ta, C(21), C(22), and Ta, C(11), C(21) planes is 122°.

The details of the benzylidene ligand's orientation are particularly important. Unlike the methylene ligand in $TaCp_2(CH_2)(CH_3)$,⁷ the benzylidene ligand (the Ta-C(11)-C(12) plane) is *not* perpendicular to the C(21)-Ta-C(11) plane. The Ta, C(11), C(12); Ta, C(11), C(21) dihedral angle is 95.7° (Table IV), i.e., it too is turned slightly to the "inside", presumably because of a steric interaction of its phenyl ring with the nearest cyclopentadienyl ligand. But because it is doubly bound to Ta it cannot turn inside as much as the benzyl ligand (the deviation from the perpendicular is only 5.7° vs. 31.5° for the benzyl ligand) in the ground state.

Two other features in the molecule may be taken as further evidence of steric crowding; the $Ta-C_{\alpha}-C_{\beta}$ angles, Ta-

	Interator	nic Distances, Å	
Ta-C(11)	2.07(1)	C ₆ H ₅	
Ta-C(21)	2.30(1)	C(12)-C(13)	1.43 (2)
		C(13)-C(14)	1.35(2)
C(11)-C(12)	1.46 (2)	C(14) - C(15)	1.38 (3)
C(21) - C(22)	1.47 (2)	C(15)-C(16)	1.33 (2)
		C(16)-C(17)	1.39 (2)
Ta-C(1)	2.41 (1)	C(17) - C(12)	1.39 (2)
Ta-C(2)	2.42 (2)	C(22)-C(23)	1.39 (2)
Ta-C(3)	2.41 (1)	C(23)-C(24)	1.41 (2)
Ta-C(4)	2.41 (1)	C(24)-C(25)	1.35 (2)
Ta-C(5)	2.44 (1)	C(25) - C(26)	1.37 (3)
Ta-C(6)	2.41 (1)	C(26) - C(27)	1.39 (3)
Ta-C(7)	2.42 (2)	C(27) - C(22)	1.39 (2)
Ta-C(8)	2.42(1)		1.38(1)
Ta-C(9)	2.43 (2)		
Ta-C(10)	2.44(1)	C ₅ H ₅	
	2.42(1)	C(1)-C(2)	1.34 (3)
		C(2) - C(3)	1.41 (3)
Nonbonding		C(3)-C(4)	1.39 (2)
H(11)H(4)	2.45	C(4) - C(5)	1.44 (2)
H(11)H(5)	2.39	C(5) - C(1)	1.42 (2)
H(11) H(23)	2.62	C(6)-C(7)	1.41 (2)
H(11)H(17)	2.50	C(7) - C(8)	1.41 (2)
H(21A)H(8)	2.41	C(8)-C(9)	1.36 (2)
H(21B)H(9)	2.40	C(9) - C(10)	1.35 (2)
H(21B) H(1)	2.60	C(10) - C(6)	1.47 (2)
H(21B)H(27)	2.25		1.40(1)
H(10) H(2)	2.71		
H(6)H(3)	2.39		
	Interator	nic Angles, deg	
C(11)-Ta-C(21)	95.2 (5)	Ta-C(11)-C(12)	135.2 (7)
CNT1-Ta-CNT2	132.6 (6)	Ta-C(21)-C(22)	123.1 (10)
CNT1-Ta-C(11)	104.5 (5)		
CNT1-Ta-C(21)	105.8 (5)	C(11)-C(12)-C(13)	125.6 (11)
CNT2-Ta-C(11)	109.3 (5)	C(11)-C(12)-C(17)	119.8 (11)
CNT2-Ta-C(21)	103.2 (5)		
		C(21)-C(22)-C(23)	120.6 (14)
		C(21)-C(22)-C(27)	121.9 (14)
Average angles			
$C-Ta-C(C_5H_5)$	33.6 (3)		
$C-C-C(C_5H_5)$	108.0 (10)		
$C-C-C(C_6H_5)$	119.9 (7)		

Table III. Interatomic Distances and Angles for $Ta(\eta^5-C_5H_5)_2(CHC_6H_5)(CH_2C_6H_5)^a$

^a The estimated error of the mean was calculated according to $[\Sigma_i(d_i - \overline{d})^2/n(n-1)]^{1/2}$ where d_i and \overline{d} are the distance or angle and mean value, respectively.

C(11)-C(12) (135.2 (7)°) and Ta-C(21)-C(22) (123.1 (10)°), are larger than expected. If we can assume that crowding affects the benzyl and benzylidene ligands about equally, then the difference between these two values (12°) is about what one might expect to be the difference between sp³- and sp²-hydridized α -carbon atoms. The larger Ta-C(11)-C(12) angle also seems to mitigate the possibly more severe steric problems caused by a shorter Ta-C(11) bond.

Discussion

We will not be concerned here with various aspects of the preparation of the complexes since the details of the crucial α -hydrogen abstraction step are still not fully understood (see ref 1 for a discussion). Neither do we yet know why $\delta^{13}C_{\alpha}$, $^{1}J_{CH}$, or τH_{α} vary from one type of complex to another as much as they do. What we wish to concentrate on is the phenomenon of alkylidene rotation into the C(alkylidene)-Ta-X plane.

The phenomenon probably can now be called a true alkylidene rotation. Various alternatives such as inversion at the metal center, loss of Cl⁻ or PR₃, or H scrambling processes which involve the alkylidene ligand can all be ruled out. The process is not intermolecular based on steric considerations and due to the fact that $TaCp_2(CH_2)(CH_3)$ decomposes intermolecularly.³ Invoking η^5 -C₅H₅ $\rightarrow \eta^1$ -C₅H₅ alone also accomplishes nothing; the alkylidene must still rotate.

The structural data for $TaCp_2(CH_2)(CH_3)$,⁷ $TaCp_2(CHPh)(CH_2Ph)$, and $TaCp_2(CHCMe_3)Cl^{12}$ show them to be very similar, pseudotetrahedral complexes with planar η^5 -C₅H₅ rings, a Cp-Ta-Cp angle of about 135°, and a C(alkylidene)-Ta-X angle of 95-100°. All single bond lengths (Ta-Cl, C-H, etc.) are normal. The Ta-C(alkyl) bond lengths (alkyl = methyl and benzyl) are around 2.25 Å, reasonable for a single bond between Ta and C(alkyl). The Ta-C(alkylidene) bond lengths, however, are shorter by ca. 0.25 Å compared to the corresponding single bond lengths. Clearly these bonds have a significant amount of double bond character.

One of the two most interesting differences between the three structures is the variation in Φ (Table V). The alkylidene is already rotated partially in the ground-state configuration (in the solid state) to an extent roughly proportional to the size of R (R = H < C₆H₅ < CMe₃) presumably owing to increasingly severe steric problems associated with a perpendicular orientation ($\Phi = 0^{\circ}$). The energy needed to further rotate the alkylidene in the same direction into the C(alkylidene)-Ta-X plane therefore decreases in the same order. One conclusion we can draw from the fact that ΔG_{rot}^{+} decreases markedly for

Table IV. I	_east-Square	Planes an	id Dihedra	l Angles	for
$Ta(\eta^5-C_5H)$	$I_5)_2(CHC_6H_5)$	(CH_2C_6)	$(H_5)^a$		

- 1. 0.9089X 0.0354Y + 0.4156Z 5.736 = 0C(1) -0.01, C(2) 0.01, C(3) 0.00, C(4) 0.00, C(5) 0.01 Ta* -2.10
- 2. 0.7834X + 0.6201 Y 0.0429Z + 3.297 = 0C(6) 0.03, C(7) -0.02, C(8) 0.00, C(9) 0.02, C(10) -0.03 Ta* 2.11
- 3. 0.4196X + 0.7587Y 0.4983Z + 4.688 = 0 C(12) -0.03, C(13) 0.03, C(14) - 0.02, C(15) 0.00, C(16) 0.00, C(17) 0.01
- 4. 0.5870X 0.0478Y + 0.8082Z 6.561 = 0 C(22) 0.00, C(23) 0.03, C(24) -0.03, C(25) 0.01, C(26) 0.02, C(27) -0.03

Dihedral Ar	ngles	
C(1)-C(5) 132.2	Ta, C(11), C(12)	41.3
C(6)-C(10)	C(12)-C(17)	
C(12)-C(17) 101.1	Ta, C(21), C(22)	60.8
C(22)-C(27)	C(22)-C(27)	
Ta, C(21), C(22) 121.5	Ta, C(11), C(12)	95.7
Ta, C(11), C(21)	Ta, C(11), C(21)	

^a The equations are based on the Cartesian coordinate system (a, c^*) . The tantalum atoms in planes 1 and 2 were not included in the refinement.

a relatively small Φ (10° for $\mathbf{R} = \mathbf{CMe}_3$) is that the overlap of the orbitals forming the π bond must be relatively poor.

The data for other complexes listed in Table I are at least consistent with the concept of a "sterically assisted" rotation of the alkylidene ligand. For example, the difference in $\Delta G_{\rm rot}^{\pm}$ for $R = SiMe_3$ vs. CMe₃, though barely significant, is in the right direction because Si is larger than C and the SiMe₃ group therefore less demanding sterically. The slightly lower $\Delta G_{rot}^{\ddagger}$ on changing η^5 -C₅H₅ to η^5 -C₅H₄Me is again in the right direction. The lower $\Delta G_{\rm rot}^{\ddagger}$ on changing from Ta to Nb is characteristic of fluxional processes in general.¹⁷ The effect of changing X from Cl to CH₃ or a larger, but not spherical ligand, CHPh₂, cannot be assessed accurately, but it is probably not great. Exchanging Cl for the relatively large PMe₃ ligand should actually encourage the neopentylidene ligand to turn outside (if steric interaction between H_{α} and CH_3 is comparatively unimportant) yet ΔG_{rot}^{\dagger} increases dramatically. This may be due largely to the effect of an overall positive charge, most likely shared between Ta and P (see below).

In the transition state, in which CHR is rotated into the C-Ta-X plane ($|\Phi| = 90^{\circ}$), the $2p_z$ orbital on C_{α} is now orthogonal to the metal orbital it overlapped with to form the π bond in the ground state.^{3,13,14,16,18} But there probably is no relatively low energy metal orbital of the appropriate symmetry to form a π bond if $|\Phi| = 90^{\circ}$ in this particular type of complex.¹⁶ (*In general* this is probably not true and barriers to rotation may be more commonly small.) If we can assume that the M=CHR bond is polarized the same way as the Ta=CH₂ bond (+M= \overline{C}), and that the polarization will be the same in the transition state, then the transition state can be described in valence bond terms as +M- \overline{C} HR. If the complex carries a

positive charge overall then this transition state would be more difficult to attain for electronic reasons as the large estimated $\Delta G_{\tau t}^{\dagger}$ for $[TaCp_2(CHCMe_3)(PMe_3)]^+Cl^-$ (Table I) suggests.

The second major difference between the three structures is the variation in θ_{ene} (Table V). For a given R, θ_{ene} , like θ_{yl} [e.g., 94° in Hf(CH₂Ph)₄¹⁹ to 123° in TaCp₂(CHPh)-(CH₂Ph)], may vary considerably depending on the congestion about the metal or (in special cases like CH₂Ph) on other factors such as valence-electron count.²⁰ But within the 18valence-electron sterically congested TaCp₂(alkylidene)X family θ_{ene} most likely depends primarily on the size of R. When R = H θ_{ene} is probably relatively insensitive to steric factors, and, within the accuracy of the x-ray method, probably constitutes a lower limit.

Experimental Section

Ta(CH₂Ph)₃Cl₂,²¹ Ta(CH₂CMe₃)₂Cl₃,⁴ and [TaCp₂-(CH₂SiMe₃)(Me)]⁺Br⁻ (ref 3) were prepared by published methods. TlC₅H₅ (Strem) was sublimed before use. LiCHPh₂-TMEDA was prepared from Li(butyl)·TMEDA and diphenylmethane. Decolorizing charcoal (Darco) was heated in vacuo overnight at 150 °C before use. Elemental analyses were done by Alfred P. Bernhardt. ¹H NMR spectra were run at 90 MHz (Perkin-Elmer) and ¹³C spectra at 22.63 or 67.89 MHz (Brucker).

(1) Preparation of TaCp₂(CHPh)(CH₂Ph). A mixture of 2.62 g of Ta(CH₂Ph)₃Cl₂ and 2.69 g of TlC₅H₅ was stirred for 1 week in 20 mL of toluene. TlCl was filtered off and nearly all of the toluene removed in vacuo. Pentane was added until the solution just became cloudy. Some decolorizing charcoal was added and the mixture was filtered. The filtrate was cooled to -30 °C for 8 h to give 1.29 g (52%) of product as light brown-orange needles. The volatiles from a 5-day reaction between 1.05 g of Ta(CH₂Ph)₃Cl₂ and 1.08 g of TlC₅H₅ in C₆H₆ contained 94% of the expected toluene by quantitative GLC comparison with a standard.

Anal. Calcd for TaC₂₄H₂₃: C, 58.55; H, 4.70. Found: C, 58.18; H, 4.76. ¹H NMR (toluene- d_8 , 100 MHz): τ –0.86 (s, 1, benzylidene H_a), 2.6–3.1 (m, 10, phenyl), 5.04 (s, 5, Cp), 5.06 (s, 5, Cp'), 7.30 (d, 1, J = 10.7 Hz, benzyl H_a), 8.21 (d, 1, J = 10.7 Hz, benzyl H_a), 1³C (from Me₄Si, ¹H decoupled, C₆D₆): 246 (benzylidene C_a), 157.7 and 155.2 (C_β on benzyl and benzylidene), 123.3 and 121.4 (C_γ on benzyl and benzylidene), ca. 130 (m, other phenyl carbon atoms), 101.6 (Cp), 101.0 (Cp'), 28.7 (benzyl C_a); (gated decoupled, CD₂Cl₂) 246 (d, ¹J_{CH} = 127, benzylidene C_a), 102 (complex d, ¹J_{CH} = 177, Cp and Cp'), 28.2 ppm (t, ¹J_{CH} = 123, benzyl C_a); the phenyl region is complex (see Figure 1).

(2) Preparation of TaCp₂(CHCMe₃)Cl. Ta(CH₂CMe₃)₂Cl₃ (3.0 g) and 3.8 g of TlC₅H₅ were stirred in toluene for 24 h. TlCl (3.9 g) was filtered off and most of the toluene removed from the filtrate in vacuo. Addition of pentane gave off-yellow, fluffy crystals. This product was stirred in acetonitrile and any insoluble TlC₅H₅ filtered off. The volume of the filtrate was decreased by removing solvent in vacuo until crystals began to form. After this solution had stood at -40 °C overnight 1.2 g of gold-orange needles (41%) was filtered off.

Anal. Calcd for TaC₁₅H₂₀Cl: C, 43.23; H, 4.85; Cl, 8.51. Found: C, 43.13; H, 4.93; Cl, 8.60. ¹H NMR (C₆D₆): τ -0.10 (1, s, ==CH-), 4.55 (5, s, Cp), 4.69 (5, s, Cp'), 8.70 (9, s, CMe₃); the τ 4.55 and 4.69 singlets are broad at 60 MHz and are beginning to merge at 35 °C. ¹³C NMR (from Me₄Si, gated decoupled, CD₂Cl₂): 274 (d, ¹J_{CH} = 121 Hz, neopentylidene C_α), 104.4 and 103.2 (d, ¹J_{CH} = 177 Hz, Cp

Table V. A Comparison of Φ , θ_{ene} , and θ_{yl} in Three Complexes^{*a*}

	$\Delta G_{\rm rot}^{\pm}$ (± 0.2),				
	Φ, deg	kcal mol ⁻¹	$\theta_{ene,}$ deg	$\theta_{\rm yl}, \deg$	
$TaCp_2(CH_2)(CH_3)^7$	0 (3)	\geq ca. 21 ^b	126 (5)		
$TaCp_2(CHPh)(CH_2Ph)$	$-5.7(5)^{\circ}$	19.2	135.2 (7)	123.1 (10)	
$TaCp_2(CHCMe_3)(Cl)^{7,12}$	10.3 (5) ^c	16.8	150.4 (5)	$[128 (4)^d]^{15}$	

^{*a*} Φ is the deviation of the alkylidene plane from an orientation 90° to the C-Ta-X plane (X = Cl, CH₃, etc., a negative value implies rotation to the "inside"). θ_{ene} is the Ta-C(alkylidene)-R angle and θ_{y1} the Ta-C(alkyl)-R angle. ^{*b*} Lauher and Hoffmann¹⁶ estimated $\Delta G^{\ddagger} = 27$ kcal mol⁻¹ in [TiCp₂(CH₂)(CH₃)]⁻. ^{*c*} Whether the alkylidene rotates to the inside or to the outside is probably very sensitive to intra- and possibly also intermolecular interactions. This subject will be discussed more fully elsewhere. ^{*d*} This value is the Ta-CH₂-CMe₃ angle found for a neopentyl group in [(Me₃CCH₂)₃Ta=CCMe₃]·Li(dmp).

and Cp'), 49.3 (s, neopentylidene C_{β}), 33.3 ppm (q, ¹J_{CH} = 125 Hz, neopentylidene C_{γ}).

The resistance of a solution of 100 mg of TaCp₂(CHCMe₃)Cl in 50 mL of CH₃CN was 74 000 Ω ; therefore $\Lambda \approx 3$ ($\Lambda \approx 100$ if fully ionized; cf. [TaCp₂(CHCMe₃)(PMe₃)]⁺Cl⁻).

(3) Preparation of Nb(CH₂CMe₃)₂Cl₃. A solution of 2.08 g of $Zn(CH_2CMe_3)_2$ in 20 mL of pentane was slowly added over 0.5 h to a briskly stirred suspension of 5.40 g of NbCl₅ in 30 mL of pentane. After 10 min the mixture was filtered and the pentane removed in vacuo to give red-orange crystals which melted near room temperature, yield 2.0-2.7 g (60-80% vs. Zn). Nb(CH₂CMe₃)₂Cl₃ crystallizes at 0 °C and is stable at -30 °C for several hours but after ca. 15 min at 25 °C decomposes suddenly evolving volumes of dense brown smoke. Nb(CH₂CMe₃)₂Cl₃ also decomposes in pentane, ether, and toluene, rapidly near 25 °C, and slowly at -20 °C to give a brown, insoluble precipitate. We do not know why it is comparatively stable at 25 °C in pentane in the presence of NbCl₅. ¹H NMR (C₆D₆): τ 6.23 (br s, 2), 8.80 (s, 9).

(4) Preparation of NbCp₂(CHCMe₃)Cl. Thallium cyclopentadienide (3.31 g) was added to 2.10 g of Nb(CH₂CMe₃)₂Cl₃ in 40 mL of toluene and the mixture stirred for 6 h. TlCl was filtered off and the solvent removed in vacuo. Pentane was added to the residue and 1.15 g of product isolated by filtration (57% crude yield). Recrystallization from acetonitrile gave 0.85 g (42%) of golden orange needles of pure NbCp₂(CHCMe₃)Cl.

¹H NMR (C₆D₆): $\tau - 2.12$ (s, 1), 4.48 (br s, 10, Cp and Cp' at 35 °C, 60 MHz), 8.74 (s, 9). ¹³C NMR (from Me₄Si, C₆D₆, gated): 299 (d, ¹J_{CH} = 131 Hz, alkylidene C_α), 106.3 (d, ¹J_{CH} = 177 Hz, Cp), 104.3 (d, ¹J_{CH} = 177 Hz, Cp'), 51.4 (s, alkylidene C_β), 31.8 ppm (q, ¹J_{CH} = 125 Hz, alkylidene C_γ). (5) Preparation of Ta(η^5 -C₅H₄Me)₂(CHCMe₃)Cl. (a) Using

(5) Preparation of $Ta(\eta^5-C_5H_4Me)_2(CHCMe_3)Cl.$ (a) Using TlC_5H_4Me . A solution of $Ta(CH_2CMe_3)_2Cl_3$ was prepared by adding 4.55 g of $Zn(CH_2CMe_3)_2$ in 25 mL of toluene to a vigorously stirred suspension of 7.91 g of $TaCl_5$ in 75 mL of toluene over 1 h. After $ZnCl_2$ was filtered off 12.5 g of TlC_5H_4Me was added and the mixture stirred overnight. The brown mixture was filtered, the solvent removed in vacuo, and the residue extracted with 50 mL of hexane. Darco (1 g) was added and the mixture was filtered. The filtrate's volume was reduced in vacuo to 25 mL and the solution stood at -30 °C to give 3.0 g of buff-colored product. Reducing the volume further to 10 mL and standing at -30 °C gave an additional 0.8 g, total crude yield 3.8 g (39%). Pure needles can be obtained by recrystallization from acetonitrile at -30 °C.

(b) Using LiC₅H₄Me. Ta(CH₂CMe₃)₂Cl₃ (5.55 g, 12.9 mmol) was dissolved in THF (50 mL) in a 250-mL round-bottom flask containing a magnetic stir bar. A dropping funnel containing LiC₅H₄ Me (2.49 g, 28.9 mmol) in THF (60 mL) was attached. After the flask was cooled to -78 °C the LiC₅H₄Me solution was added dropwise to the stirred solution over 90 min. The mixture was stirred while warming to room temperature and the solvent was removed in vacuo. The product was extracted into hexane and filtered (weight of off-white solid 1.15 g; theory for LiCl and unreacted LiC₅H₄Me is 1.36 g). The hexane was removed in vacuo and the crude product dissolved in a minimum volume of CH₃CN. The solution was filtered and stood at -40 °C for 18 h. Crystalline Ta(η^5 -C₅H₄Me)₂(CHCMe₃)Cl (3.47 g, 60% yield) was filtered and dried in vacuo.

¹H NMR (toluene- d_8 , 20 °C, 220 MHz; see Figure 3): τ 0.19 (s, 1, ==CH-), 3.69, 4.72, 4.83, 4.94, 5.22, 5.25, 5.39, and 5.43 (m, 1 each, 8 cyclopentadienyl protons), 8.03 (s, 3, methyl), 8.33 (s, 3, methyl), 8.86 (s, 9, CMe₃); at 106 °C 0.14 (s, 1, ==CH-), 4.34, 4.76, 5.09, 5.22 (m, 2 each, 8 cyclopentadienyl protons), 8.11 (s, 6, methyl), 8.86 (s, 9, CMe₃). ¹³C NMR (from Me₄Si, C₆D₆, gated, 67.89 MHz): 269.4 (d, J = 119 Hz, alkylidene C_a), 122.7 (s, ring *C*-Me), 118.2 (s, ring C-Me), ca. 110–100 (complex m, 6 ring carbon), 99.1 (d, J = 171 Hz, ring carbon), 94.9 (d, J = 177 Hz, ring carbon), 48.7 (s, alkylidene C_a), 33.9 (q, J = 124 Hz, alkylidene C₄), 16.0 (q, J = 124 Hz, ring CH₃), 15.1 ppm (q, J = 128 Hz, ring CH₃).

(6) Preparation of TaCp₂(CHCMe₃)(CHPh₂). LiCHPh₂-TMEDA (1.05 g, 3.62 mmol) was added to a stirred solution of Cp₂Ta(CHC-Me₃)Cl (1.50 g, 3.60 mmol) in 30 mL of toluene. The mixture was stirred for 1.5 h and filtered (0.18 g of white solid; theory for LiCl 0.15 g), and the solvent was removed in vacuo. The dark oil was extracted into approximately 50 mL of hexane. Addition of ether (10 mL) precipitated 0.82 g of a cream-colored solid. The mother liquor was reduced in vacuo to an oil. Addition of a minimal volume of hexane followed by ether precipitated an additional 0.21 g of product, total

yield 52%. The product can be recrystallized from hexane/ether mixtures.

¹H NMR (C₆D₆): τ 0.15 (s, 1, ==CH-), 2.70-3.15 (m, 10, Ph), 4.96 (s, 5, Cp), 5.00 (s, 5, Cp'), 5.65 (s, 1, -CHPh₂), 8.65 (s, 9, CMe₃). ¹³C NMR (from Me₄Si, C₆D₆, gated, 67.89 MHz): 267.4 (d, *J* = 113 Hz, alkylidene C_α), phenyl region complex and indicative of two non-equivalent phenyl groups, 102.9 (d, *J* = 176 Hz, Cp), 99.7 (d, *J* = 176 Hz, Cp'), 50.3 (s, alkylidene C_β), 48.3 (d, *J* = 122 Hz, CHPh₂), 34.3 ppm (q, *J* = 123 Hz, alkylidene C_γ).

(7) Preparation of TaCp₂(CHSiMe₃)(CH₃). A suspension of 3.0 g of $[TaCp_2(CH_2SiMe_3)(CH_3)]$ +Br⁻ in 25 mL of THF was treated with 1.60 g of Me₃P=CH₂ in 10 mL of THF. After stirring for 10 min all solvent was removed in vacuo and the residue was extracted with 125 mL of pentane. Decolorizing charcoal was added and the mixture was filtered. White crystals were filtered off as the pentane was removed in vacuo, total yield 1.30 g (52%). Anal. Calcd for TaC₁₅H₂₃Si: C, 43.69; H, 5.62. Found: C, 43.71;

Anal. Calcd for TaC₁₅H₂₃Si: C, 43.69; H, 5.62. Found: C, 43.71; H, 5.68. ¹H NMR (C₆D₆, 220 MHz): τ -0.14 (s, 1, ==CH-), 4.74 (s, 5, Cp), 4.91 (s, 5, Cp'), 9.66 (s, 9, SiMe₃), 9.82 (s, 3, TaMe). ¹³C NMR (from Me₄Si, gated decoupled, C₆D₆): 236 (d, ¹J_{CH} = 107 Hz, alkylidene C_α), 102.8 (d, ¹J_{CH} = 177 Hz, Cp), 101.3 (d, ¹J_{CH} = 177 Hz, Cp'), 3.8 (q, ¹J_{CH} = 118 Hz, TaMe or SiMe₃), -0.5 ppm (q, ¹J_{CH} = 124 Hz, SiMe₃ or TaMe).

(8) Preparation of [TaCp₂(CHCMe₃)(PMe₃))⁺Cl⁻. PMe₃ (1.0 mL) was added to a solution of 2.0 g of TaCp₂(CHCMe₃)Cl in 10 mL of toluene. After stirring overnight 2.3 g of white powder was filtered off (97%). This was recrystallized from acetonitrile to give silvery-white plates.

Anal. Calcd for TaC₁₈H₂₉ClP: C, 43.86; H, 5.94. Found: C, 43.91; H, 5.90. ¹H NMR (CD₃CN, 220 MHz): τ – 1.45 (d, ³J_{HP} = 4 Hz, =-CH-), 4.09 (d, ³J_{HP} = 2.2 Hz, Cp), 4.12 (d, ³J_{HP} = 2.2 Hz, Cp'), 8.34 (d, ²J_{HP} = 10 Hz, PMe₃), 8.95 (s, CMe₃). ¹³C NMR (from Me₄Si, ¹H decoupled, CD₃CN): 294 (d, ²J_{CP} = 13.8 Hz, neopentylidene C_α), 102.1 (poor d, ²J_{CP} ≤ 1 Hz, Cp), 98.8 (poor d, ²J_{CP} ≤ 1 Hz, Cp'), 53.6 (poor d, ³J_{CP} ≈ 1 Hz, neopentylidene C_β), 32.8 (d, ⁴J_{CP} = 3.0 Hz, neopentylidene C_γ), 22.1 ppm (d, ¹J_{CP} = 33.5 Hz, PMe₃). In the gated decoupled spectrum the ¹J_{CH} values (Hz) were 110 (neopentylidene C_α), 180 (Cp), 180 (Cp'), 122 (neopentylidene C_γ), and 130 (PMe₃).

The resistance of a solution of 100 mg of the product in 50 mL of acetonitrile was 2600 Ω ; therefore $\Lambda = 94$.

Calculations of ΔG^{\ddagger} . For TaCp₂(CHPh)(CH₂Ph) at 100 MHz the chemical shift difference between Cp and Cp' was plotted vs. *T* up to the point where the two began to broaden, and extrapolated to T_c (349 K) to give $\delta \nu_{\infty} = 2.6$ Hz at T_c (in this case $\delta \nu_{\infty}$ was directly proportional to *T*). Therefore $k_c = 5.8 \text{ s}^{-1}$ and $\Delta G^{\ddagger} = 19.2$ kcal mol^{-1,10} ΔG^{\ddagger} varies little with $\Delta \nu_{\infty}$ (<0.1 kcal mol⁻¹ at 349 K for $\delta \nu_{\infty} = 2.3-2.8$ Hz) but does with T_c (from 18.9 at 340 K to 20.1 at 360 K).

Calculating ΔG^{\pm} from the benzyl α -proton AB pattern is more accurate. $\delta \nu_{\infty}$ varies inversely with T. At $T_c = 391$ K, $\delta \nu_{\infty} = 68$ Hz and $J_{\text{H}_{A}\text{H}_{B}} = 10.7$ Hz. Therefore $k_c = 162 \text{ s}^{-1}$ and $\Delta G^{\pm}_{391} = 19.2$ kcal mol⁻¹. A reasonable error in ΔG^{\pm} is ± 0.2 kcal mol⁻¹.

Other calculations of ΔG^{\ddagger} were done as above by observing coalescing cyclopentadienyl singlets with the exception of Ta(η^{5} -C₅H₄Me)₂(CHCMe₃)Cl where the coalescing methyl singlet resonances were followed.

Crystal Structure. Cell and Intensity Data. Crystals of $Ta(\eta^5-C_5H_5)_2(CHC_6H_5)(CH_2C_6H_5)$ from toluene are monoclinic with a = 8.836 (2), b = 15.955 (5), c = 13.617 (9) Å, and $\beta = 100.20$ (4)°. The space group is $P2_1/c$ (h0l, l = 2n + 1, and 0k0, k = 2n + 1 extinctions). The calculated density for four molecules per cell is 1.73 g/cm³.

Crystals were sealed in capillaries in a nitrogen-filled drybox. A prismatic crystal $0.17 \times 0.32 \times 0.50$ mm was used for data collection on a Picker four-circle automatic diffractometer. Zirconium-filtered Mo radiation ($\lambda 0.7107$ Å) was used to measure 2457 reflections $(2\theta_{max} = 45^\circ)$ by the $\theta(crystal)-2\theta(counter)$ technique. The scan rate was 1°/min and the 2θ scan range was 1.5° plus the wavelength dispersion. Backgrounds of 15 s were measured before and after each scan.

A correction for crystal decomposition was made; the maximum correction was 9% in F_0 . The data were also corrected for absorption effects using a six planar face model for the crystal. The minimum and maximum calculated transmission factors are 0.14 and 0.36, respectively. The linear absorption coefficient for Mo K α radiation is 61.3

cm⁻¹. Structure factor errors were estimated as previously described.²² Structure factors with $F_0 < \sigma(F_0)$ were given zero weight in the refinements.

Structure Solution and Refinement. The structure was solved using "heavy-atom" techniques. Difficulties were encountered in the early stages of the structure solution because of pseudosymmetry resulting from the essentially zero value of the y coordinate of the Ta. The Rvalue $(\Sigma ||F_o| - |F_c||/\Sigma |F_o|)$ was 0.062 with all nonhydrogen atoms included in the model with anisotropic temperature factors. All hydrogen atoms were observed in an electron density difference map at $0.3 \text{ e}/\text{Å}^3$ for the benzyl and benzylidene, $0.2-0.4 \text{ e}/\text{Å}/^3$ for the phenyl, and 0.3-0.6 e/Å³ for the cyclopentadienyl hydrogens. All hydrogen atoms were included, but not refined, in calculated positions (C-H = 1.0 Å) with fixed isotropic temperature factors of 6.0 Å². Final refinements were done in two blocks: (a) the scale factor, tantalum, and C(1)-C(10) atoms; (b) the scale factor, tantalum, C(11)-C(17), and C(21)-C(27) atoms. The final R values for 1917 reflections with $F_{\rm o} > \sigma(F_{\rm o})$ are 0.059 for R and 0.064 for $R_w [\Sigma w(|F_{\rm o}| - |F_{\rm c}|)^2 / 10^{-3}]$ $\Sigma w |F_0|^2]^{1/2}$.

Neutral atom scattering factors were used.²³ The Ta atom scattering factors were corrected for the real and imaginary parts of the anomalous scattering.²⁴ The function $\Sigma w(|F_0| - |F_c|)^2$ was minimized in the refinement.25

The final positional and thermal parameters are given in Table II. A list of observed and calculated structure factors is available.²⁶

Supplementary Material Available: A table of observed and calculated structure factor amplitudes (5 pages). Ordering information is given on any current masthead page.

Acknowledgment. R.R.S. wishes to thank the National Science Foundation for financial support at Massachusetts Institute of Technology (CHE 76-07410), the Francis N. Bitter National Magnet Laboratory for use of their high-field NMR facilities, and P. Meakin for a complete line shape analysis of the ¹H NMR spectrum of TaCp₂(CHCMe₃)Cl. L.W.M. thanks the Dow Chemical Central Research Laboratory for a graduate fellowship.

References and Notes

- (1) Part 8; R. R. Schrock and J. D. Fellmann, J. Am. Chem. Soc., 100, 3359 (1978).
- (a) Alfred P. Sloan Fellow, 1976-1978; (b) Dow Chemical Central Research (2) Fellow; (c) Massachusetts Institute of Technology; (d) E. I. du Pont de

Nemours and Co.

- (3) (a) R. R. Schrock and P. R. Sharp, J. Am. Chem. Soc., 100, 2389 (1978). (b) R. R. Schrock, *ibid.*, 97, 6577 (1975).
- (4) S. J. McLain, C. D. Wood, and R. R. Schrock, J. Am. Chem. Soc., 99, 3519 (1977).
- (5) Since the yield of thermally stable NbCp(CHCMe₃)Cl₂ is low⁴ yet that of NbCp₂(CHCMe₃)Cl high, we cannot yet exclude the possibility that α -hydrogen abstraction⁶ occurs in another intermediate, e.g., Nb(η^1 -C₅H₅)₂(CH₂CMe₃)₂Cl.
- (6) We are steadily accumulating evidence for α -hydrogen abstraction, though whether the α -hydrogen atom transfers first to Ta, then to a neopentyl α -carbon atom, or directly, is still not known. The main experimental problem which has hindered mechanistic studies so far is that if a precursor is stable, the alkylidene product usually is not, and vice versa.
- (7) L. J. Guggenberger and R. R. Schrock, J. Am. Chem. Soc., 97, 6578 (1975).
- (8) (a) The α protons in complexes containing the stabilized "carbene" ligand, (c) The product of t and K. Turner, J. Chem. Soc., Chem. Commun., 851 (1972); (c) M. Broo khardt and G. O. Nelson, *J. Am. Chem. Soc.*, **99**, 6099 (1977); (d) C. P. Casey and S. W. Polichnowski, *ibid.*, **99**, 6097 (1977).
- (9) R. R. Schrock, J. Am. Chem. Soc., 96, 6796 (1974).
- (10) D. Kost, E. H. Carlson, and M. Raban, *Chem. Commun.*, 656 (1971).
 (11) The signals are separated by 2.8 Hz at 90 °C and 90 MHz in the ¹H[³¹P] spectrum. If we assume T_c to be ca. 400 K and δv_{\odot} to be 2.8 Hz at that temperature, then $k_c = 4.0 \text{ s}^{-1}$ and $\Delta G^{\ddagger}_{400K} = 22.7 \text{ kcal mol}^{-1}$. (12) M. R. Churchill, F. Hollander, and R. R. Schrock, *J. Am. Chem. Soc.*, **100**,
- 647 (1978).
- (13) (a) K. Prout, T. S. Cameron, R. A. Forder, S. R. Critchley, B. Denton, and G. V. Rees, Acta Crystallogr., Sect. B, 30, 2290 (1974); (b) J. C. Green, M. L. H. Green, and C. K. Prout, J. Chem. Soc., Chem. Commun., 421 (1972).
- (14) L. J. Guggenberger, Inorg. Chem., 12, 294 (1973).
- (15) L. J. Guggenberger and R. R. Schrock, J. Am. Chem. Soc., 97, 2935 (1975).
- (16) J. W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 98, 1729 (1976)
- L. M. Jackman and F. A. Cotton, Ed., "Dynamic Nuclear Magnetic Resonance Spectroscopy", Academic Press, New York, N.Y., 1975.
 J. L. Petersen and L. F. Dahl, J. Am. Chem. Soc., 97, 6416 (1975).
- (19) G. R. Davies, J. A. J. Jarvis, B. J. Kilbourn, and A. J. P. Pioli, Chem. Commun. 677 (1971).
- (20) The low value for θ_{y_i} in M(CH₂Ph)₄, M = Ti, Zr, Hf, has been ascribed to interaction between M (as a Lewis acid, perhaps) with the aryl group.¹⁹ This is clearly not possible in TaCp2(CHPh)(CH2Ph) for both steric and electronic reasons
- (21) R. R. Schrock, J. Organomet. Chem., 122, 209 (1976).
- (22) L. J. Guggenberger, *Inorg. Chem.*, 7, 2260 (1968).
 (23) H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, *Acta Crystallogr.*, 17, 1040 (1964)
- (24) "International Tables for X-Ray Crystallography", Vol. III, Kynoch Press, Birmingham, England, 1962, p 214.
- (25) Computer programs used, in addition to local programs, were the Prewitt absorption correction program ACACA and the Prewitt least-squares proram SFLS5
- (26) See paragraph at end of paper regarding supplementary material.